National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Topology optimization of a quadcopter arm using 3D print
Simon, Jakub ; Červinek, Ondřej (referee) ; Vaverka, Ondřej (advisor)
This bachelor thesis deals with the comparison of manufacturing constraints applied during topology optimization of a demonstration component, which was a quadcopter arm. Four designed arms were optimized, each with different manufacturing constraints: Extrusion, Single draw, Split draw, Overhang and one arm only with symmetry plane, without any other manufacturing constraint. For all designs, it was important to maintain a continuous geometry during optimization and that final weight approximately equals to the weight of the original arm. All five arms were then subjected to static structural analysis with the finite element method. After that, arms were printed using Fused deposition modelling (FDM) from ABS material and then tested by static force. The photogrammetry method was used to evaluate deformation. Results of the experiment were recalculated to relative stiffness, where small differences between weights were considered. Relative stiffnesses of designed arms were then compared, showing that 4 out of 5 topology optimized arms have higher stiffness than the original shape. The toughest design is without manufacturing constraints which at the same weight has 12.5 times higher relative stiffness than the original arm.
Topology optimization of a quadcopter arm using 3D print
Simon, Jakub ; Červinek, Ondřej (referee) ; Vaverka, Ondřej (advisor)
This bachelor thesis deals with the comparison of manufacturing constraints applied during topology optimization of a demonstration component, which was a quadcopter arm. Four designed arms were optimized, each with different manufacturing constraints: Extrusion, Single draw, Split draw, Overhang and one arm only with symmetry plane, without any other manufacturing constraint. For all designs, it was important to maintain a continuous geometry during optimization and that final weight approximately equals to the weight of the original arm. All five arms were then subjected to static structural analysis with the finite element method. After that, arms were printed using Fused deposition modelling (FDM) from ABS material and then tested by static force. The photogrammetry method was used to evaluate deformation. Results of the experiment were recalculated to relative stiffness, where small differences between weights were considered. Relative stiffnesses of designed arms were then compared, showing that 4 out of 5 topology optimized arms have higher stiffness than the original shape. The toughest design is without manufacturing constraints which at the same weight has 12.5 times higher relative stiffness than the original arm.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.